Equipe Friant : Papier dans Journal of Cell Science

J Cell Sci. 2014 Dec 15. pii: jcs.159699.

Btn3 regulates the endosomal sorting function of the yeast Ent3 epsin, an adaptor for SNARE proteins.

Morvan J, de Craene JO, Rinaldi B, Addis V, Misslin C, Friant S.

Abstract

Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain containing proteins involved in protein trafficking between the Golgi and late endosomes (LE). They interact with clathrin, clathrin adaptor at the Golgi (AP-1 and GGA) and different SNAREs (Vti1, Snc1, Pep12 and Syn8) required for vesicular transport at the Golgi and endosomes. To better understand the role of these epsins in membrane trafficking, we performed a protein-protein interaction screen. We identified Btn3/Tda3, a putative oxidoreductase, as a new partner of both Ent3 and Ent5. Btn3 is a negative regulator of the Batten disease linked protein Btn2 involved in the retrieval of specific SNAREs (Vti1, Snc1, Tlg1 and Tlg2) from the LE to the Golgi. We show that Btn3 endosomal localization depends on epsins Ent3 and Ent5. We demonstrated that in btn3? mutant cells, endosomal sorting of ubiquitinated cargos and endosomal recycling of the Snc1 SNARE are delayed. We thus propose that Btn3 regulates the sorting function of two adaptors for SNARE proteins, the epsin Ent3 and the Batten disease linked protein Btn2.

Pubmed